Quaternion-Based Iterative Solution of Three-Dimensional Coordinate Transformation Problem

نویسندگان

  • Huaien Zeng
  • Qinglin Yi
چکیده

Three-dimensional coordinate transformation problem is the most frequent problem in photogrammetry, geodesy, mapping, geographical information science (GIS), and computer vision. To overcome the drawback that traditional solution of the problem based on rotation angles depends strongly on initial value of parameter, which makes the method ineffective in the case of super-large rotation angle, the paper adopts an unit quaternion to represent three-dimensional rotation matrix, then puts forward a quaternion-based iterative solution of the problem. The cases study shows that the quaternion-based solution has no dependence on the initial value of parameter and desirable result with fast speed. Thus it is valid for three-dimensional coordinate transformation of any rotation angle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iterative algorithm for the generalized ‎$‎(P‎,‎Q)‎$‎-reflexive solution of a‎ ‎quaternion matrix equation with ‎$‎j‎$‎-conjugate of the unknowns

In the present paper‎, ‎we propose an iterative algorithm for‎ ‎solving the generalized $(P,Q)$-reflexive solution of the quaternion matrix‎ ‎equation $overset{u}{underset{l=1}{sum}}A_{l}XB_{l}+overset{v} ‎{underset{s=1}{sum}}C_{s}widetilde{X}D_{s}=F$‎. ‎By this iterative algorithm‎, ‎the solvability of the problem can be determined automatically‎. ‎When the‎ ‎matrix equation is consistent over...

متن کامل

Thermal Development for Ducts of Arbitrary Cross Sections by Boundary-Fitted Coordinate Transformation Method

The non-orthogonal boundary-fitted coordinate transformation method is applied to the solution of steady three-dimensional momentum and energy equations in laminar flow to obtain temperature field and Nusselt numbers in the thermal entry region of straight ducts of different cross sectional geometries. The conservation equations originally written in Cartesian coordinates are parabolized in the...

متن کامل

An efficient method for the coordinate transformation problem of massively three-dimensional networks

A new and efficient algorithm is presented for the coordinate transformation problem of massively three-dimensional networks formed, e.g., by the atoms of crystal fragments or molecular clusters. The new algorithm is based on a divide-and-conquer technique to perform iterative coordinate transformation, applicable even for three-dimensional networks, with linear scaling memory and near linear s...

متن کامل

Simulation of Styrene Polymerization in Arbitrary Cross-Sectional Duct Reactors by Boundary-Fitted Coordinate Transformation Method

The non-orthogonal boundary-fitted coordinate transformation method is applied to the solution of steady three-dimensional conservation equations of mass, momentum, energy and speciescontinuity to obtain the laminar velocity, temperature and concentration fields for simulation of polymerization of styrene in arbitrary cross-sectional duct reactors. Variable physical properties (except for speci...

متن کامل

Non-Fourier heat conduction equation in a sphere; comparison of variational method and inverse Laplace transformation with exact solution

Small scale thermal devices, such as micro heater, have led researchers to consider more accurate models of heat in thermal systems. Moreover, biological applications of heat transfer such as simulation of temperature field in laser surgery is another pathway which urges us to re-examine thermal systems with modern ones. Non-Fourier heat transfer overcomes some shortcomings of Fourier heat tran...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • JCP

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011